THE CONFORMATIONS OF 1-ACYL-2-ALKYLCYCLOHEXENES

J. K. GROVES and N. JONES

Chemistry and Metallurgy Department, Lanchester College of Technology, Coventry, England

(Received in the UK 8 August 1968; accepted for publication 28 August 1968)

Abstract—A series of 1-acyl-2-alkylcyclohexenes are assigned s-cis conformations on the basis of their IR spectra. UV absorption data show that non-planarity within the chromophore parallels the steric requirements of the acyl and alkyl substituents.

THE compound 1-acetyl-2-methylcyclohexene has, at various times, been assigned both an s- $cis^{1,2}$ and an s- $trans^{3,4}$ conformation.

In a recent paper Cottee *et al.*⁵ employ the following criteria in assigning conformations to $\alpha\beta$ -unsaturated ketones: (a) the ratio of the integrated band intensities of the carbonyl/alkenyl stretching vibrations (r^i) is above 5.2 for s-*trans* conformers and between 0.6 and 3.5 for s-*cis* conformers; (b) the difference between the carbonyl and alkenyl stretching frequencies (Δv) is less than 60 cm⁻¹ for s-*trans* and greater than 70 cm⁻¹ for s-*cis* conformers. The assignment of an s-*cis* conformation to 1-acetyl-2-methylcyclohexene by these workers prompts us to publish our own observations upon a series of 1-acyl-2-alkylcyclohexenes obtained by base catalysed isomerization of the corresponding 6-acyl-1-alkylcyclohexenes.⁶ For comparison 1-acetyl-cyclohexene, known to exist in the planar s-*trans* form⁷ is also included in Table 1.

The r^i values confirm that the alkyl substituted ketones have an s-cis conformation. The Δv values are in good agreement with this assignment with the exception of 1-isobutyryl-2-methylcyclohexene. This compound also exhibits an unusually broad and asymmetric band for the alkenyl stretching vibration.

One reason for the small r^i values observed with s-cis ketones is the strong coupling of the C=O and C=C stretching vibrations in this conformation.⁸ It has been stated⁵ that deviation from planarity within an s-cis conformation will tend to reduce this coupling and consequently increase the r^i value. On this basis the change in our r^i values may be attributed to non-planarity. In the case of 1-acetyl-2-methylcyclohexene such non-planarity has been demonstrated by ¹³C NMR investigation.⁷

CO∙R	R'	ν _{C=0} (cm ⁻¹)	ν _{C=C} (cm ⁻¹)	r ⁱ	Δv (cm ⁻¹)	λ _{max} (mμ)	٤ _{max}	ſ	θ
CO·Me	н	1665	1641	7.7	24	232	12,500	0.332	0°
CO · Mc	Ме	1688	1618	1-3	70	248	6500	0.165	31
CO•Me	Et	1687	1614	1.7	73	248	5800	0.147	36
CO·Me	Pr ⁿ	1687	1614	1.9	73	248	5150	0.127	41
CO•Me	Bu ⁿ	1688	1614	2.2	74	248	4050	0.103	48
CO · Me	Pent ⁿ	1687	1614	2.3	73	248	3850	0-098	49
CO·Et	Me	1687	1620	2.8	67	247	5000	0.127	41
CO · Pr ⁱ	Me	1688	1638	2.4	50	247	4000	0.093	50
CO · Bu ^t	Me	1684*	_		_	249*	1300*		ca. 68

TABLE 1. THE SPECTRAL PROPERTIES OF 1-ACYL-2-ALKYLCYCLOHEXENES

* Values reported by Braude et al.4

The considerable variation of the UV extinction coefficients (ϵ) and oscillator strengths (f) reported in Table 1 are also consistent with varying degrees of non-planarity within the chromophore.⁹ Braude and Sondheimer¹⁰ have proposed the semi-empirical¹¹ Eq (1) relating oscillator strengths to the angle of twist (Θ).

$$\cos^2 \theta = f/f_0 \tag{1}$$

For the present systems it has been estimated¹ that f_0 , the oscillator strength of the corresponding fully planar chromophore, would be 0.68 times that value observed for 1-acetyl-cyclohexene. This value has been combined with our own data to calculate the angles of twist tabulated. The extent of non-planarity is seen to parallel the increasing size¹² of the acyl and alkyl substituents.

EXPERIMENTAL

IR measurements. All IR spectra were determined on a Unicam SP200 spectrometer. Spectrophotometric grade CCl_4 was used as solvent and concentrations were adjusted to give absorbance values between 0.6 and 0.7 using cells with a path length of 0.1 mm. The frequency was checked against polystyrene for each spectrum. The r^i values have been calculated from the Eq (2),

$$r^{i} = A^{c} \Delta v_{\frac{1}{2}}^{c} / A^{a} \Delta v_{\frac{1}{2}}^{a} \tag{2}$$

where A^c and A^a are absorbance values and $\Delta v_{\frac{1}{2}}^c$ and $\Delta v_{\frac{1}{2}}^a$ the apparent half band widths of the carbonyl and alkenyl bands respectively.

UV measurements. UV absorptions were determined from MeOH soln using a Unicam SP 500 spectrometer. Oscillator strengths have been obtained from the general expression (3), with K = unity.

$$f = 4.315 \times 10^{-9} \,\mathrm{K} \,\Delta v_4 \varepsilon \tag{3}$$

REFERENCES

- ¹ R. B. Turner and D. M. Voitle, J. Am. Chem. Soc. 73, 1043 (1951).
- ² R. L. Erskine and E. S. Waight, J. Chem. Soc. 3425 (1960).
- ³ E. A. Braude, E. R. H. Jones, H. P. Koch, R. W. Richardson, F. Sondheimer and J. B. Toogood, *Ibid.* 1890 (1959).
- ⁴ E. A. Braude and C. J. Timmons, Ibid. 3766 (1955).
- ⁵ F. H. Cottee, B. P. Straughan, C. J. Timmons, W. F. Forbes and R. Shilton, Ibid. (B), 1146 (1967).
- ⁶ J. K. Groves and N. Jones, Ibid. in press.
- ⁷ D. H. Marr and J. B. Stothers, Canad. J. Chem. 43, 596 (1965).

- ⁸ K. Noak, Spectrochim. Acta 18, 1625 (1962).
- ⁹ W. F. Forbes, The Classification of Steric Effects in Ultraviolet Absorption Spectra in Steric Effects in Conjugated Systems. Butterworths, London (1958).
- ¹⁰ E. A. Braude and F. Sondheimer, J. Chem. Soc. 3754 (1955).
- ¹¹ H. H. Jaffe and M. Orchin, Theory and Applications of Ultraviolet Spectroscopy. Wiley, New York (1964).
- ¹² R. W. Taft, Steric Effects in Organic Chemistry, Wiley, New York (1956).